login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the fourth largest parts in the partitions of n into 5 squarefree parts.
4

%I #10 Sep 16 2019 21:31:54

%S 0,0,0,0,0,1,1,2,2,5,7,9,10,16,18,25,25,35,40,51,54,74,83,105,112,145,

%T 156,191,198,246,267,317,331,402,430,502,520,613,652,758,791,925,979,

%U 1118,1152,1337,1406,1603,1667,1905,2009,2266,2343,2652,2787,3134

%N Sum of the fourth largest parts in the partitions of n into 5 squarefree parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * k, where mu is the Möbius function (A008683).

%F a(n) = A308839(n) - A308841(n) - A308843(n) - A308844(n) - A308845(n).

%e The partitions of n into 5 parts for n = 10, 11, ..

%e 1+1+1+1+10

%e 1+1+1+2+9

%e 1+1+1+3+8

%e 1+1+1+4+7

%e 1+1+1+5+6

%e 1+1+1+1+9 1+1+2+2+8

%e 1+1+1+2+8 1+1+2+3+7

%e 1+1+1+3+7 1+1+2+4+6

%e 1+1+1+4+6 1+1+2+5+5

%e 1+1+1+5+5 1+1+3+3+6

%e 1+1+1+1+8 1+1+2+2+7 1+1+3+4+5

%e 1+1+1+2+7 1+1+2+3+6 1+1+4+4+4

%e 1+1+1+3+6 1+1+2+4+5 1+2+2+2+7

%e 1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6

%e 1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5

%e 1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5

%e 1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4

%e 1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4

%e 1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6

%e 1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5

%e 1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4

%e 1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4

%e 2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3

%e --------------------------------------------------------------------------

%e n | 10 11 12 13 14 ...

%e --------------------------------------------------------------------------

%e a(n) | 7 9 10 16 18 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 16 2019

%t Table[Sum[Sum[Sum[Sum[k * MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2 *MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

%Y Cf. A008683, A308839, A308840, A308841, A308843, A308844, A308845.

%K nonn

%O 0,8

%A _Wesley Ivan Hurt_, Jun 28 2019