login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum of the second largest parts in the partitions of n into 5 parts.
5

%I #10 Sep 13 2019 09:41:27

%S 0,0,0,0,0,1,1,3,5,10,15,25,35,54,74,105,138,189,242,317,400,509,628,

%T 783,950,1164,1394,1677,1985,2361,2765,3246,3768,4382,5043,5815,6640,

%U 7596,8621,9789,11043,12465,13981,15689,17513,19554,21723,24139,26704

%N Sum of the second largest parts in the partitions of n into 5 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} i.

%F a(n) = A308822(n) - A308823(n) - A308824(n) - A308825(n) - A308827(n).

%e The partitions of n into 5 parts for n = 10, 11, ..

%e 1+1+1+1+10

%e 1+1+1+2+9

%e 1+1+1+3+8

%e 1+1+1+4+7

%e 1+1+1+5+6

%e 1+1+1+1+9 1+1+2+2+8

%e 1+1+1+2+8 1+1+2+3+7

%e 1+1+1+3+7 1+1+2+4+6

%e 1+1+1+4+6 1+1+2+5+5

%e 1+1+1+5+5 1+1+3+3+6

%e 1+1+1+1+8 1+1+2+2+7 1+1+3+4+5

%e 1+1+1+2+7 1+1+2+3+6 1+1+4+4+4

%e 1+1+1+3+6 1+1+2+4+5 1+2+2+2+7

%e 1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6

%e 1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5

%e 1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5

%e 1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4

%e 1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4

%e 1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6

%e 1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5

%e 1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4

%e 1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4

%e 2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3

%e --------------------------------------------------------------------------

%e n | 10 11 12 13 14 ...

%e --------------------------------------------------------------------------

%e a(n) | 15 25 35 54 74 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 12 2019

%t Table[Sum[Sum[Sum[Sum[i, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 100}]

%Y Cf. A026811, A308822, A308823, A308824, A308825, A308827.

%K nonn

%O 0,8

%A _Wesley Ivan Hurt_, Jun 26 2019