login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308815
a(n) = 16^n*Sum_{i=0..n} 2^i*binomial(n, i)*Catalan(2*n-i).
0
1, 0, 512, 32768, 3014656, 285212672, 28521267200, 2950642532352, 313455303196672, 33990302461067264, 3747096045042008064, 418698249981751459840, 47315379509207945445376, 5398203160147467800936448, 620943817223351793348509696, 71934849808689842265157271552, 8385447350799836001482047488000
OFFSET
0,3
COMMENTS
For n >= 3, a(n) is the number of odd covers of degree 2n+1 of a general curve of genus n. See Farkas et al.
LINKS
Gavril Farkas, Riccardo Moschetti, Juan Carlos Naranjo, Gian Pietro Pirola, Alternating Catalan numbers and curves with triple ramification, arXiv:1906.10406 [math.AG], 2019.
FORMULA
G.f.: 2*t/(sqrt(1+64*t^2+16*t*sqrt(16*t^2+1)) + sqrt(1+64*t^2-16*t*sqrt(16*t^2+1))) (odd powers only).
Conjecture: D-finite with recurrence: n*(2*n+1)*a(n) -32*(9*n-4)*(n-1)*a(n-1) +1024*(3*n^2-23*n+29)*a(n-2) +65536*(n-2)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jan 27 2020
a(n) ~ 2^(7*n) / (3^(3/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 19 2021
PROG
(PARI) C(n) = binomial(2*n, n)/(n+1);
a(n) = 16^n*sum(i=0, n, (-2)^i*binomial(n, i)*C(2*n-i));
CROSSREFS
Cf. A000108 (Catalan numbers).
Sequence in context: A254450 A254484 A253864 * A253536 A254383 A253977
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 26 2019
STATUS
approved