login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308799
Primes p such that A001177(p) = (p-1)/6.
8
541, 709, 2281, 2389, 2689, 4861, 5869, 7069, 8089, 8761, 8821, 8929, 9049, 9601, 10009, 10321, 10789, 12421, 12781, 13309, 13681, 14341, 14869, 14929, 16981, 19309, 19429, 19501, 19609, 20389, 21841, 22741, 23629, 24181, 24481, 25189, 26821, 27109, 27361, 27961
OFFSET
1,1
COMMENTS
Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/6, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 6. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 14 | 609
5 | 147 | 4777
6 | 1216 | 39210
7 | 10477 | 332136
8 | 90720 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).
MATHEMATICA
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
Reap[For[p = 2, p < 28000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
PROG
(PARI) Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4, p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M, p)^v[d])[2, 1]==0, return(v[d]))))
forprime(p=2, 28000, if(Entry_for_decomposing_prime(p)==(p-1)/6, print1(p, ", ")))
CROSSREFS
Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), this sequence (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).
Sequence in context: A050960 A142737 A020378 * A308791 A160200 A363717
KEYWORD
nonn
AUTHOR
Jianing Song, Jun 25 2019
STATUS
approved