The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308753 a(n) = Sum_{d|n} d^(2*(d-1)). 4
 1, 5, 82, 4101, 390626, 60466262, 13841287202, 4398046515205, 1853020188851923, 1000000000000390630, 672749994932560009202, 552061438912436478063702, 542800770374370512771595362, 629983141281877223617054459942 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..215 FORMULA L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k-3))) = Sum_{k>=1} a(k)*x^k/k. G.f.: Sum_{k>=1} k^(2*(k-1)) * x^k/(1 - x^k). MATHEMATICA a[n_] := DivisorSum[n, #^(2*(# - 1)) &]; Array[a, 14] (* Amiram Eldar, May 08 2021 *) PROG (PARI) {a(n) = sumdiv(n, d, d^(2*(d-1)))} (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-3))))) (PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*(k-1))*x^k/(1-x^k))) CROSSREFS Column k=2 of A308701. Cf. A283533, A308692, A308696, A308755, A308756. Sequence in context: A280675 A209102 A274388 * A163011 A142162 A082546 Adjacent sequences:  A308750 A308751 A308752 * A308754 A308755 A308756 KEYWORD nonn AUTHOR Seiichi Manyama, Jun 22 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 04:58 EDT 2021. Contains 345125 sequences. (Running on oeis4.)