Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 08 2023 07:12:15
%S 2,1,43,7,1,1145,4,20,71,1,7,1879,376,2,458,10,1,1763,46,5,147,20,38,
%T 983,4,188,43,1,2,229,94,5,397,7,2531,988,40,23,912,4,1,6692,3,10,
%U 3769,19,62,741,63,2,1716,94,20,1783,8,589,191,1,27,430,986,47,49
%N Smallest positive m such that n*m is a partial sum of primes.
%H Alois P. Heinz, <a href="/A308749/b308749.txt">Table of n, a(n) for n = 1..20000</a>
%F a(n) = A007504(A053050(n))/n.
%F a(n) = 1 <=> n in { A007504 } \ { 0 }.
%p s:= proc(n) option remember; `if`(n=0, 0, ithprime(n)+s(n-1)) end:
%p a:= proc(n) option remember; local k; for k
%p while irem(s(k), n)>0 do od; s(k)/n
%p end:
%p seq(a(n), n=1..70);
%t s[n_] := s[n] = If[n == 0, 0, Prime[n] + s[n-1]];
%t a[n_] := a[n] = Module[{k}, For[k = 1, True, k++, If[Mod[s[k], n] <= 0, Return[s[k]/n]]]];
%t Table[a[n], {n, 1, 70}] (* _Jean-François Alcover_, Dec 08 2023, after _Alois P. Heinz_ *)
%Y Cf. A000040, A007504, A053050.
%K nonn
%O 1,1
%A _Alois P. Heinz_, Jun 21 2019