login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sequence of 5 Pythagorean triangles, each with a leg and hypotenuse prime. The hypotenuse of each triangle is the leg of the next triangle.
6

%I #10 Jun 12 2019 16:25:00

%S 356498179,432448789,5380300469,10667785241,11238777509,12129977791,

%T 23439934621,28055887949,33990398249,34250028521,34418992099,

%U 34773959159,34821663421,36624331189,40410959231,43538725229,47426774869

%N Sequence of 5 Pythagorean triangles, each with a leg and hypotenuse prime. The hypotenuse of each triangle is the leg of the next triangle.

%H Ray Chandler, <a href="/A308636/b308636.txt">Table of n, a(n) for n = 1..38</a>

%H H. Dubner and T. Forbes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/DUBNER/pyth.html">Prime Pythagorean triangles</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.3.

%F For each p(n), q=(p*p+1)/2, r=(q*q+1)/2, s=(r*r+1)/2, t=(s*s+1)/2, u=(t*t+1)/2 and p, q, r, s, t, u are all prime.

%e p(1)=356498179, q=63545475815158021, r=63545475815158021, s=2038208257886801569993754841378314277932542447949256249537232302421, ...

%Y Cf. A048161, A048270, A048295, A308635. Primes in A187431.

%K nonn

%O 1,1

%A _Ray Chandler_, Jun 12 2019