login
Number of distinct subset sums of the subsets of the set of divisors of n.
1

%I #30 Jan 02 2023 09:00:57

%S 2,4,4,8,4,13,4,16,8,16,4,29,4,16,16,32,4,40,4,43,16,16,4,61,8,16,16,

%T 57,4,73,4,64,16,16,16,92,4,16,16,91,4,97,4,64,56,16,4,125,8,64,16,64,

%U 4,121,16,121,16,16,4,169,4,16,60,128,16,145,4,64,16,143,4,196,4,16,64,64

%N Number of distinct subset sums of the subsets of the set of divisors of n.

%C Conjecture: When the terms are sorted and the duplicates deleted a supersequence of A030058 is obtained. Note that A030058 is a result of the same operation applied to A030057.

%C a(p^k) = 2^(k+1) if p is prime, and a(n) = 2n+1 if n is an even perfect number. - _David Radcliffe_, Dec 22 2022

%F a(n) = 1 + A119347(n). - _Rémy Sigrist_, Jun 10 2019

%e The subsets of the set of divisors of 6 are {{},{1},{2},{3},{6},{1,2},{1,3},{1,6},{2,3},{2,6},{3,6},{1,2,3},{1,2,6},{1,3,6},{2,3,6},{1,2,3,6}}, with the following sums {0,1,2,3,6,3,4,7,5,8,9,6,9,10,11,12}, of which 13 are distinct. Therefore, a(6)=13.

%p A308605 := proc(n)

%p # set of the divisors

%p dvs := numtheory[divisors](n) ;

%p # set of all the subsets of the divisors

%p pdivs := combinat[powerset](dvs) ;

%p # the set of the sums in subsets of divisors

%p dvss := {} ;

%p # loop over all subsets of divisors

%p for s in pdivs do

%p # compute sum over entries of the subset

%p sps := add(d,d=s) ;

%p # add sum to the realized set of sums

%p dvss := dvss union {sps} ;

%p end do:

%p # count number of distinct entries (distinct sums)

%p nops(dvss) ;

%p end proc:

%p seq(A308605(n),n=1..20) ; # _R. J. Mathar_, Dec 20 2022

%t f[n_]:=Length[Union[Total/@Subsets[Divisors[n]]]]; f/@Range[100]

%o (Python)

%o from sympy import divisors

%o def a308605(n):

%o s = set([0])

%o for d in divisors(n):

%o s = s.union(set(x + d for x in s))

%o return len(s) # _David Radcliffe_, Dec 22 2022

%Y Cf. A030057, A030058, A119347.

%K nonn

%O 1,1

%A _Ivan N. Ianakiev_, Jun 10 2019