Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 24 2019 14:25:12
%S 2,2946,4,18,830,86,342,498,36002,2310,14660,3791908,138060,160110,
%T 998836,4345842,357341648,56717562,36609556,5972021576,2654687244,
%U 8237027666,22719286202,1542163060562,222365303318
%N a(n) is the least positive even number k such that among the first k prime numbers there are exactly k/2 prime numbers where the n-th least significant bit is one, or a(n) = -1 if no such k exists.
%C Is a(n) always positive?
%C If a(n) > 0, then a(n) >= 2*A000720(2^(n-1)-1). - _Chai Wah Wu_, Jun 13 2019
%F When a(n) > 0, Sum_{k = 1..a(n)} (-1)^floor(prime(k)/2^(n-1)) = 0 (where prime(k) denotes the k-th prime number).
%o (PARI) { s = vector(18); a = vector(#s); u = 1; forprime (p=2, oo, n++; for (b=1, #s, if (!a[b], s[b]+=(-1)^bittest(p,b-1); if (s[b]==0, a[b]=n; while (a[u], print1 (a[u]", "); u++; if (u>#a, break(3))))))) }
%o (Python)
%o from sympy import primepi
%o def A308575(n):
%o n2, t1 = 2**(n-1), 0
%o k = n2 - 1
%o kp = primepi(k)
%o kp2 = primepi(k+n2)-kp
%o while kp2 < kp or t1 >= kp:
%o k += n2
%o t1, t2 = kp, kp2
%o kp2 = primepi(k+n2) - kp2
%o kp = t2
%o return 2*kp # _Chai Wah Wu_, Jun 13 2019
%Y Cf. A000040, A000720.
%K nonn,base,more,hard
%O 1,1
%A _Rémy Sigrist_, Jun 08 2019
%E a(20)-a(23) from _Chai Wah Wu_, Jun 13 2019
%E a(24)-a(25) from _Chai Wah Wu_, Jun 24 2019