Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Oct 14 2019 01:26:34
%S 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,2,3,2,1,1,1,1,1,1,1,1,
%T 1,1,2,1,1,1,1,2,1,1,1,1,4,1,2,1,3,1,1,1,1,1,1,1,1,1,3,4,3,1,1,1,1,2,
%U 1,1,4,1,1,2,3,1,1,1,1,1,8,1,1,2,1,1,3,1,11,1,21,1,1,1,2,5,3,5,0,1,1,2,1,1,3
%N Least k such that k*n and (k+1)*n fail to have a common nonzero digit, or 0 if this property never occurs.
%C a(n) = 0 for the members of A308466.
%H David Radcliffe, <a href="/A308479/b308479.txt">Table of n, a(n) for n = 1..10000</a>
%H David Radcliffe, <a href="https://gist.github.com/Radcliffe/2e0a1810dca175e91dd77c50db1f4b44">Python script for A308479</a>
%F If a(n) = k, then a(10*n) = k.
%e a(3) = 1 since 1*3 and 2*3 have no digit in common;
%e a(12) = 2 since 1*12 and 2*12 have the digit 2 in common, but 2*12 and 3*12 have no nonzero digit in common, thus a(12) = 2;
%e a(25) = 3 since 1*25 and 2*25 have the digit 5 in common, 2*25 and 3*25 have the digit 5 in common, but 3*25 and 4*25 have no nonzero digit in common; etc.
%t a = Compile[{{n, _Integer}}, Module[{k = 1, id1 = DeleteCases[ IntegerDigits[ n], 0], id2 = DeleteCases[ IntegerDigits[ 2n], 0]}, While[k < 1001 && Intersection[id1, id2] != {}, id1 = id2; k++; id2 = DeleteCases[ Union[ IntegerDigits[(k + 1) n]], 0]]; If[k == 1001, 0, k]]]; Array[a, 198]
%Y Cf. A308466.
%K nonn,base
%O 1,12
%A _David Radcliffe_, Daniel Griller, and _Robert G. Wilson v_, May 29 2019