login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime whose n-th power can be represented as the sum of the n-th powers of two or more distinct primes; or -1 if no such prime exists.
1

%I #23 Jul 20 2019 11:04:13

%S 5,103,59,127,151,547,307

%N Smallest prime whose n-th power can be represented as the sum of the n-th powers of two or more distinct primes; or -1 if no such prime exists.

%C From _Bert Dobbelaere_, Jul 19 2019: (Start)

%C a(8) > 800 or a(8) = -1.

%C Any sum of 6th powers of distinct primes that adds up to a 6th power of a prime must have at least 65 terms (see expression for a(6)^6 in example). This follows from the fact that for any prime p except 2, 3 and 7, p^6 == 1 (mod 504). A similar argument using modulus 480 gives us a lower bound of 97 terms for a(8)^8.

%C (End)

%H dxdy forum, <a href="https://dxdy.ru/post1395207.html">post</a> (in Russian).

%e a(1) = 5, because 5^1 = 2^1 + 3^1.

%e a(2) = 103, because 103^2 = 2^2 + 3^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 + 19^2 + 23^2 + 29^2 + 31^2 + 41^2 + 43^2 + 61^2.

%e a(3) = 59, because 59^3 = 5^3 + 13^3 + 29^3 + 31^3 + 53^3.

%e a(4) = 127, because 127^4 = 3^4 + 5^4 + 7^4 + 11^4 + 13^4 + 17^4 + 23^4 + 29^4 + 31^4 + 43^4 + 47^4 + 59^4 + 61^4 + 67^4 + 73^4 + 89^4 + 103^4.

%e a(5) = 151, because 151^5 = 2^5 + 5^5 + 7^5 + 11^5 + 13^5 + 17^5 + 31^5 + 37^5 + 43^5 + 47^5 + 53^5 + 59^5 + 71^5 + 73^5 + 79^5 + 101^5 + 103^5 + 107^5 + 109^5 + 113^5.

%e a(6) = 547, because 547^6 = 3^6 + 5^6 + 7^6 + 11^6 + 17^6 + 19^6 + 23^6 + 29^6 + 31^6 + 41^6 + 43^6 + 47^6 + 53^6 + 59^6 + 67^6 + 71^6 + 73^6 + 79^6 + 83^6 + 97^6 + 101^6 + 103^6 + 109^6 + 113^6 + 127^6 + 131^6 + 137^6 + 139^6 + 149^6 + 151^6 + 157^6 + 163^6 + 167^6 + 173^6 + 179^6 + 181^6 + 191^6 + 193^6 + 197^6 + 199^6 + 211^6 + 223^6 + 227^6 + 229^6 + 233^6 + 239^6 + 251^6 + 257^6 + 263^6 + 269^6 + 271^6 + 277^6 + 281^6 + 293^6 + 307^6 + 311^6 + 313^6 + 317^6 + 337^6 + 347^6 + 353^6 + 359^6 + 367^6 + 389^6 + 419^6. - _Bert Dobbelaere_, Jul 18 2019

%e a(7) = 307, because 307^7 = 11^7 + 13^7 + 23^7 + 29^7 + 31^7 + 41^7 + 43^7 + 47^7 + 59^7 + 73^7 + 89^7 + 97^7 + 103^7 + 109^7 + 113^7 + 127^7 + 131^7 + 137^7 + 139^7 + 149^7 + 151^7 + 167^7 + 191^7 + 193^7 + 197^7 + 199^7 + 223^7 + 227^7 + 233^7 + 239^7 + 251^7. - _Bert Dobbelaere_, Jul 17 2019

%e Note that these are the smallest prime powers for which such a representation is possible.

%Y Cf. A308357.

%K nonn,more,hard

%O 1,1

%A _Dmitry Kamenetsky_, May 28 2019

%E a(6)-a(7) from _Bert Dobbelaere_, Jul 18 2019