

A308441


a(n) = (1/n!) * Sum_{i=n..n^2} b(i) where Sum_{i=n..n^2} b(i) * x^i/i! = (Sum_{i=1..n} binomial(n1,i1)*x^i/i!)^n.


1



1, 1, 7, 1653, 40206186, 208933247676473, 395488498710726039573053, 415462449496430820816987469491515317, 342970299885886953080843975129290159101335513911582, 299220423631045059715652854654572624968209204858890842067137945793201
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS



PROG

(PARI) {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, binomial(n1, j1)*x^j/j!)^n, i))/n!}


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



