Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jun 03 2019 15:02:33
%S 3,2,7,2,11,2,31,2,3,2,43,2,71,2,211,2,23,2,67,2,3,2,331,2,5,2,463,2,
%T 3,2,2311,2,3,2,79,2,131,2,17,2,3,2,547,2,911,2,2731,2,7,2,859,2,3,2,
%U 7,2,2003,2,6007,2,3,2,59,2,5,2,103,2,3,2,7,2,239
%N a(n) is the smallest prime factor of 1 + the product of primes indexed by the binary digits of n.
%H Chai Wah Wu, <a href="/A308439/b308439.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A020639(A019565(n) + 1). - _Michel Marcus_, Jun 02 2019
%e a(1) = a(01_2) = 2^1 * 3^0 + 1 = 3;
%e a(2) = a(10_2) = 2^0 * 3^1 + 1 = 2^2 = 2;
%e a(3) = a(11_2) = 2^1 * 3^1 + 1 = 7.
%o (PARI) a(n) = {my(b = binary(n), x = 1 + prod(k=1, #b, prime(#b-k+1)^b[k])); factor(x)[1,1];} \\ _Michel Marcus_, Jun 02 2019
%o (Python)
%o from functools import reduce
%o from operator import mul
%o from sympy import prime, primefactors
%o def A308439(n):
%o return min(primefactors(1 + reduce(mul,(prime(i+1) for i,j in enumerate(bin(n)[:1:-1]) if j == '1')))) # _Chai Wah Wu_, Jun 03 2019
%Y Cf. A000945, A019565, A020639.
%K nonn,base
%O 1,1
%A _Brendan Hickey_, May 27 2019