Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 21 2019 02:47:26
%S 1,1,4,21,146,1210,11894,133000,1677668,23439684,359651232,6000427884,
%T 108157599120,2092493844480,43240336406136,950021322002904,
%U 22108068716440272,543048769028068944,14037848562783308160,380851191359082217488,10818262594065294568416
%N Expansion of e.g.f. exp(-1 + Product_{k>=1} 1/(1 - x^k/k)).
%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A007841(k)*a(n-k).
%t nmax = 20; CoefficientList[Series[Exp[Product[1/(1 - x^k/k), {k, 1, nmax}] - 1], {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A007841, A143463, A308338.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, May 20 2019