login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer-sided triangles with perimeter n and at least one nonsquare side length.
0

%I #9 Jun 18 2020 13:54:56

%S 0,0,0,0,1,1,2,1,2,2,4,2,5,4,7,5,8,7,9,8,12,9,14,12,16,14,18,16,21,19,

%T 24,21,26,23,30,26,33,30,37,33,39,37,44,40,48,44,52,47,56,52,60,56,65,

%U 60,70,65,74,70,79,75,85,80,91,85,96,90,102,96,108

%N Number of integer-sided triangles with perimeter n and at least one nonsquare side length.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>

%F a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * (1 - A010052(i) * A010052(k) * A010052(n-i-k)).

%F a(n) = A005044(n) - A308064(n).

%t Table[Sum[Sum[(1 - (Floor[Sqrt[i]] - Floor[Sqrt[i - 1]]) (Floor[Sqrt[k]] - Floor[Sqrt[k - 1]]) (Floor[Sqrt[n - k - i]] - Floor[Sqrt[n - k - i - 1]]))*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

%Y Cf. A005044, A010052, A308064.

%K nonn

%O 1,7

%A _Wesley Ivan Hurt_, May 19 2019