login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Sum_{k>=1} mu(k)*log(1 + Sum_{j>=1} x^(prime(j)*k))/k.
3

%I #5 May 19 2019 20:41:06

%S 0,1,1,-1,0,-1,1,0,-1,-1,2,1,0,-3,0,1,3,-2,-1,0,4,-3,-1,-5,6,2,2,-11,

%T 4,4,13,-16,-5,-8,30,-8,-7,-33,42,8,16,-82,27,19,95,-116,-21,-45,223,

%U -82,-40,-264,326,46,135,-629,242,99,752,-942,-105,-421,1826,-717,-240

%N Expansion of Sum_{k>=1} mu(k)*log(1 + Sum_{j>=1} x^(prime(j)*k))/k.

%C Inverse Euler transform of A010051.

%F -1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A010051.

%t nmax = 65; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Sum[x^(Prime[j] k), {j, 1, nmax}]]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%Y Cf. A000607, A008683, A010051, A030010.

%K sign

%O 1,11

%A _Ilya Gutkovskiy_, May 19 2019