Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 23 2019 01:37:11
%S 1,2,1,1,1,2,3,1,1,3,1,4,1,1,4,5,1,1,5,1,2,4,6,1,1,6,1,4,6,2,1,6,2,7,
%T 1,1,7,1,8,1,1,8,3,1,7,8,1,2,5,8,1,9,1,1,9,3,1,8,9,1,3,6,10,1,1,10,1,
%U 5,8,2,10,1,8,10,1,11,1,1,11,4,1,9,10,1
%N Lexicographically earliest sequence of positive terms such that a(1) = 1, a(2) = 2, and for any n > 0, (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) is unique.
%C This sequence shows chaotic behavior (see scatterplot in Links section).
%C This behavior is determined by the choice of the two leading terms.
%C The variant, say b, with b(1) = b(2) = 1, corresponds to the natural numbers interspersed with pairs of ones: 1,1,1, 2,1,1, 3,1,1, etc. (b(n) = abs(A157128(n))).
%H Rémy Sigrist, <a href="/A308293/b308293.txt">Table of n, a(n) for n = 1..10000</a>
%H Rémy Sigrist, <a href="/A308293/a308293.png">Colored scatterplot of (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) for n = 1..32702782</a> (where the hue is function of n)
%H Rémy Sigrist, <a href="/A308293/a308293.txt">C program for A308293</a>
%e The first terms, alongside (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))), are:
%e n a(n) (abs(a(n+2)-a(n)),abs(a(n+2)-a(n+1)))
%e -- ---- -------------------------------------
%e 1 1 (0,1)
%e 2 2 (1,0)
%e 3 1 (0,0)
%e 4 1 (1,1)
%e 5 1 (2,1)
%e 6 2 (1,2)
%e 7 3 (2,0)
%e 8 1 (2,2)
%e 9 1 (0,2)
%e 10 3 (1,3)
%e 11 1 (0,3)
%e 12 4 (3,0)
%e 13 1 (3,3)
%e 14 1 (4,1)
%e 15 4 (3,4)
%o (C) See Links section.
%Y See A080427 for a simpler variant.
%Y Cf. A157128.
%K nonn
%O 1,2
%A _Rémy Sigrist_, May 19 2019