login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{i>=1, j>=1} theta_3(x^(i*j))/theta_4(x^(i*j)), where theta_() is the Jacobi theta function.
2

%I #7 May 29 2019 14:13:08

%S 1,4,16,56,172,496,1360,3528,8824,21344,50048,114360,255336,557888,

%T 1195952,2519264,5221076,10660512,21467904,42674520,83812560,

%U 162753584,312689168,594740456,1120498048,2092059800,3872731232,7110830376,12955269304,23428775520

%N Expansion of Product_{i>=1, j>=1} theta_3(x^(i*j))/theta_4(x^(i*j)), where theta_() is the Jacobi theta function.

%C Convolution of the sequences A305050 and A308286.

%H Vaclav Kotesovec, <a href="/A308288/b308288.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%F G.f.: Product_{k>=1} (theta_3(x^k)/theta_4(x^k))^tau(k), where tau = number of divisors (A000005).

%F G.f.: Product_{i>=1, j>=1} (Sum_{k=-oo..+oo} x^(i*j*k^2))/(Sum_{k=-oo..+oo} (-1)^k*x^(i*j*k^2)).

%F G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^4/(1 + x^(2*i*j*k))^2.

%F G.f.: Product_{k>=1} (1 + x^k)^(4*tau_3(k))/(1 + x^(2*k))^(2*tau_3(k)), where tau_3 = A007425.

%t nmax = 29; CoefficientList[Series[Product[Product[EllipticTheta[3, 0, x^(i j)]/EllipticTheta[4, 0, x^(i j)], {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 29; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k]/EllipticTheta[4, 0, x^k])^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A000005, A000122, A002448, A007096, A007425, A301554, A305050, A308286, A320967, A320970.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, May 18 2019