%I #14 May 23 2019 14:48:35
%S 185786062728816307,213323700687847507,240861338646878707,
%T 268398976605909907,295936614564941107,323474252523972307,
%U 351011890483003507,378549528442034707,406087166401065907,433624804360097107,461162442319128307,488700080278159507,516237718237190707,543775356196221907,571312994155253107,598850632114284307,626388270073315507,653925908032346707,681463545991377907,709001183950409107
%N Length 20 arithmetic progression of primes (PAP-20).
%C Found using software made by Jaroslaw Wroblewski and Geoff Reynolds for the PrimeGrid project.
%H PrimeGrid, <a href="https://www.primegrid.com/ap.php?fterm=185786062728816307&length=20&difference=123435760">Complete progression</a>
%F a(n) = 185786062728816307 + 123435760*23#*n for n = 0..19.
%K nonn,fini,full
%O 0,1
%A _Natan Getschel_, May 18 2019