login
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^3)*A(x^5)*A(x^7)* ... *A(x^(2*k-1))* ...
2

%I #8 May 29 2019 14:11:59

%S 1,1,1,2,2,3,4,5,6,9,11,13,17,20,25,33,39,46,59,69,83,103,121,143,175,

%T 206,242,293,342,400,481,558,650,771,893,1040,1225,1414,1634,1912,

%U 2202,2538,2954,3390,3893,4517,5165,5913,6820,7783,8893,10212,11626,13239,15156,17219

%N G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^3)*A(x^5)*A(x^7)* ... *A(x^(2*k-1))* ...

%H Vaclav Kotesovec, <a href="/A308283/b308283.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=1} 1/(1 - x^(2*k-1))^A074206(2*k-1).

%t terms = 55; A[_] = 1; Do[A[x_] = 1/(1 - x) Product[A[x^(2 k - 1)], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

%Y Cf. A074206, A129374, A308271, A308284.

%K nonn

%O 0,4

%A _Ilya Gutkovskiy_, May 18 2019