login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime with E-irregularity index n.
0

%I #7 May 26 2019 15:00:08

%S 2,5,307,277

%N Smallest prime with E-irregularity index n.

%C Smallest prime p such that A308243(i) = n, where i is the index of p in A000040.

%C E-regular primes have E-irregularity index 0, so a(0) = 2, since 2 is the smallest E-regular prime (A092217).

%C Does such a prime exist for every n?

%C a(4) > 2003 if it exists.

%H R. Ernvall and T. Metsänkylä, <a href="https://doi.org/10.1090/S0025-5718-1978-0482273-9">Cyclotomic invariants and E-irregular primes</a>, Mathematics of Computation 32 (1978), 617-629.

%o (PARI) a000364(n) = subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1) \\ after _Charles R Greathouse IV_ in A000364

%o a308243(n) = my(p=prime(n), e=2, i=0); while(e <= p-3, if(a000364(e)%p==0, i++); e=e+2); i

%o a(n) = for(x=1, oo, if(a308243(x)==n, return(prime(x))))

%Y Cf. A000040, A061576, A092217, A308243.

%K nonn,hard,more

%O 0,1

%A _Felix Fröhlich_, May 17 2019