login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals: T(n,k) = number of non-isomorphic kC_n-snakes for n >= 3 and k >= 2.
0

%I #27 Sep 28 2019 21:58:06

%S 1,1,1,1,2,1,1,2,3,1,1,3,3,6,1,1,3,6,6,10,1,1,4,6,18,10,20,1,1,4,10,

%T 18,45,20,36,1,1,5,10,40,45,135,36,72,1,1,5,15,40,136,135,378,72,136,

%U 1,1,6,15,75,136,544,378,1134,136,272,1

%N Array read by ascending antidiagonals: T(n,k) = number of non-isomorphic kC_n-snakes for n >= 3 and k >= 2.

%C A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path.

%F For n >= 3 and k >= 2, T(n,k) = (floor(n/2)^(k-2) + floor(n/2)^(floor(k-1)/2))/2.

%F For n even, T(n, 2)=1, if k is odd T(n,k)=(n/2)*T(n,k-1), if k is even T(n,k)=(n/2)*T(n,k-1)-((n-2)/4)*(n/2)^((k-2)/2).

%e T(n,2)=1 because there is only one way to connect two copies of C_n.

%e T(3,k)=1 because C_3 is isomorphic to K_3 and all the selections of 2 cutpoints, in each interior copy of C_3, are equivalent.

%e T(5,4)=3 there are only 3 non-equivalent strings of length 2 corresponding to the distances between consecutive cutpoints: 11, 12, and 2,2.

%e Table begins:

%e 1 1 1 1 1 1 1 1 1 1 1

%e 1 2 3 6 10 20 36 72 136 272 528

%e 1 2 3 6 10 20 36 72 136 272 528

%e 1 3 6 18 45 135 378 1134 3321 9963 29646

%e 1 3 6 18 45 135 378 1134 3321 9963 29646

%e 1 4 10 40 136 544 2080 8320 32896 131584 524800

%e 1 4 10 40 136 544 2080 8320 32896 131584 524800

%e 1 5 15 75 325 1625 7875 39375 195625 978125 4884375

%e 1 5 15 75 325 1625 7875 39375 195625 978125 4884375

%e 1 6 21 126 666 3996 23436 140616 840456 5042736 30236976

%e 1 6 21 126 666 3996 23436 140616 840456 5042736 30236976

%e 1 7 28 196 1225 8575 58996 412972 2883601 20185207 141246028

%e 1 7 28 196 1225 8575 58996 412972 2883601 20185207 141246028

%e 1 8 36 288 2080 16640 131328 1050624 8390656 67125248 536887296

%e 1 8 36 288 2080 16640 131328 1050624 8390656 67125248 536887296

%e 1 9 45 405 3321 29889 266085 2394765 21526641 193739769 1743421725

%e 1 9 45 405 3321 29889 266085 2394765 21526641 193739769 1743421725

%e 1 10 55 550 5050 50500 500500 5005000 50005000 500050000 5000050000

%K easy,nonn,tabl

%O 3,5

%A _Christian Barrientos_, May 15 2019