%I #12 Mar 04 2022 04:20:29
%S 0,2,6,7,9,15,19,20,22,24,26,30,31,33,39,43,46,50,51,53,59,63,64,66,
%T 68,70,74,75,77,81,83,87,88,90,96,100,101,103,105,107,111,112,114,120,
%U 124,127,131,132,134,140,144,145,147,151,155,156,158,164,168,169,171,173,175,179,180,182,188,192,195,199,200,202
%N Numbers m such that the tribonacci representation of m (A278038) ends in an odd number of 0's.
%C The asymptotic density of this sequence is 1/(c+1) = 0.352201..., where c = 1.839286... (A058265) is the tribonacci constant. - _Amiram Eldar_, Mar 04 2022
%H Amiram Eldar, <a href="/A308198/b308198.txt">Table of n, a(n) for n = 1..10000</a>
%t t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[0] = True; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; OddQ[Min[s] - 1]]; Select[Range[0, 202], q] (* _Amiram Eldar_, Mar 04 2022 *)
%Y Cf. A278038, A278045, A308197, A058265.
%K nonn,base
%O 1,2
%A _N. J. A. Sloane_, Jun 22 2019