Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 05 2021 09:17:43
%S 1,2,3,7,26,92,314,1055,3589,12410,43356,152336,537721,1906063,
%T 6781737,24206994,86644157,310871212,1117741815,4026430097,
%U 14528792287,52504325068,189999731589,688411569408,2497081766875,9067028323162,32953990726244,119875216666167
%N Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go above the diagonal x=y and consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1.
%H Alois P. Heinz, <a href="/A308114/b308114.txt">Table of n, a(n) for n = 0..550</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%F a(n) ~ c * d^n / sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.243302622746026118665161170169985306... - _Vaclav Kotesovec_, May 24 2019
%p b:= proc(x, y) option remember; `if`(y=0, [1$2], (p-> p+
%p [0, p[1]])(add(add(`if`(x+v>y+h or igcd(h, v)>1, 0,
%p b(x-h, y-v)), v=1..y), h=1..x)))
%p end:
%p a:= n-> b(n$2)[2]:
%p seq(a(n), n=0..30);
%t f[p_List] := p + {0, p[[1]]}; f[0] = 0;
%t b[{x_, y_}] := b[{x, y}] = If[y == 0, {1, 1},
%t f[Sum[Sum[If[x + v > y + h || GCD[h, v] > 1, {0, 0},
%t b[{x - h, y - v}]], {v, 1, y}], {h, 1, x}]]];
%t a[n_] := b[{n, n}][[2]];
%t a /@ Range[0, 30] (* _Jean-François Alcover_, Apr 05 2021, after _Alois P. Heinz_ *)
%Y Cf. A308112, A308113.
%K nonn
%O 0,2
%A _Alois P. Heinz_, May 13 2019