login
A308084
a(n) = n*(n-1)*d(n)/4, where d(n)=A000005(n) is the number of divisors of n.
1
0, 1, 3, 9, 10, 30, 21, 56, 54, 90, 55, 198, 78, 182, 210, 300, 136, 459, 171, 570, 420, 462, 253, 1104, 450, 650, 702, 1134, 406, 1740, 465, 1488, 1056, 1122, 1190, 2835, 666, 1406, 1482, 3120, 820, 3444, 903, 2838, 2970, 2070, 1081, 5640, 1764, 3675, 2550
OFFSET
1,3
COMMENTS
One eighth of row sums of A308805.
When n is not a square, d(n) is even; when n=k^2 for some k, n*(n-1)=(k-1)*k^2*(k+1) is a multiple of 4; in all cases a(n) is an integer.
LINKS
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
FORMULA
a(n) = A000217(n-1)*A000005(n)/2.
From Peter Bala, Jan 21 2021: (Start)
G.f.: A(q) = (1/4)*Sum_{n >= 1} q^n*((n*2 + n)*q^n + n^2 - n)/(1 - q^n)^3.
Faster converging g.f.: A(q) = (1/4)*Sum_{n >= 1} q^(n^2)*( (n^2 + n)*q^n + n^2 - n)*( (n^2 - n)*q^(2*n) - 2*(n^2 - 1)*q^n + n^2 + n )/(1 - q^n)^3 - differentiate equation 5 in Arndt twice w.r.t. q and set x = 1. (End)
MATHEMATICA
Table[n * (n - 1) * DivisorSigma[0, n] / 4, {n, 1, 50}] (* Amiram Eldar, Aug 14 2019 *)
PROG
(PARI)
for(n=1, 80, print1(n*(n-1)*numdiv(n)/4, ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luc Rousseau, Aug 07 2019
STATUS
approved