OFFSET
1,3
COMMENTS
One eighth of row sums of A308805.
When n is not a square, d(n) is even; when n=k^2 for some k, n*(n-1)=(k-1)*k^2*(k+1) is a multiple of 4; in all cases a(n) is an integer.
LINKS
Luc Rousseau, Table of n, a(n) for n = 1..10000
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
FORMULA
From Peter Bala, Jan 21 2021: (Start)
G.f.: A(q) = (1/4)*Sum_{n >= 1} q^n*((n*2 + n)*q^n + n^2 - n)/(1 - q^n)^3.
Faster converging g.f.: A(q) = (1/4)*Sum_{n >= 1} q^(n^2)*( (n^2 + n)*q^n + n^2 - n)*( (n^2 - n)*q^(2*n) - 2*(n^2 - 1)*q^n + n^2 + n )/(1 - q^n)^3 - differentiate equation 5 in Arndt twice w.r.t. q and set x = 1. (End)
MATHEMATICA
Table[n * (n - 1) * DivisorSigma[0, n] / 4, {n, 1, 50}] (* Amiram Eldar, Aug 14 2019 *)
PROG
(PARI)
for(n=1, 80, print1(n*(n-1)*numdiv(n)/4, ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luc Rousseau, Aug 07 2019
STATUS
approved