login
Expansion of 1/(1 - x * Sum_{k>=1} prime(k)*x^k).
2

%I #6 May 04 2019 21:51:48

%S 1,0,2,3,9,19,48,107,258,594,1405,3277,7693,18004,42203,98834,231592,

%T 542497,1271003,2977529,6975674,16342011,38285178,89691782,210124363,

%U 492265243,1153247379,2701752062,6329489153,14828313076,34738805240,81383803849,190660665579,446667359857,1046423138962

%N Expansion of 1/(1 - x * Sum_{k>=1} prime(k)*x^k).

%C Antidiagonal sums of square array, in which row m equals the m-fold convolution of primes with themselves.

%F Recurrence: a(n+1) = Sum_{k=1..n} prime(k)*a(n-k).

%t nmax = 34; CoefficientList[Series[1/(1 - x Sum[Prime[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

%t a[0] = 1; a[n_] := a[n] = Sum[Prime[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 34}]

%Y Cf. A000040, A030017, A030018, A300662, A307899.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, May 04 2019