login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the asymptotic mean of d(k)/2^omega(k), where d(k) is the number of divisors of k (A000005) and omega(k) is the number of its distinct prime divisors (A001221).
9

%I #42 Aug 10 2023 03:28:47

%S 1,4,2,7,6,5,6,5,3,5,4,2,4,8,3,9,8,8,3,1,1,7,5,2,3,9,3,9,6,8,7,3,2,7,

%T 9,0,4,0,9,3,7,3,3,6,2,8,0,7,4,4,3,9,2,7,4,2,2,4,7,4,1,4,3,6,7,3,4,4,

%U 2,9,8,8,3,4,1,1,5,3,8,9,4,0,7,4,8,3,0,3,5,2,6,0,8,3,7,4,0,5,1,7,7,9,3,2,5

%N Decimal expansion of the asymptotic mean of d(k)/2^omega(k), where d(k) is the number of divisors of k (A000005) and omega(k) is the number of its distinct prime divisors (A001221).

%C Also the asymptotic mean of ratio between the number of divisors and the number of unitary divisors of the integers.

%H Ouarda Bouakkaz and Abdallah Derbal, <a href="https://doi.org/10.7546/nntdm.2023.29.3.445-453">The mean value of the function d(n)/d*(n) in arithmetic progressions</a>, Notes on Number Theory and Discrete Mathematics, Vol. 29, No. 3 (2023), pp. 445-453.

%H Mihoub Bouderbala, <a href="https://doi.org/10.46298/cm.10467">On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5</a>, Communications in Mathematics, Vol. 31, No. 1 (2023), pp. 369-374; <a href="https://arxiv.org/abs/2212.05549v2">arXiv preprint</a>, arXiv:2212.05549 [math.NT], 2022.

%H Abdallah Derbal and Meselem Karras, <a href="https://doi.org/10.1016/j.crma.2016.03.007">Valeurs moyennes d'une fonction liée aux diviseurs d'un nombre entier</a>, C. R. Acad. Sci. Paris, Ser. I, Vol. 354, No. 6 (2016), pp. 555-558.

%H Mark Kac, <a href="https://web.archive.org/web/20220609160228/http://www.gibbs.if.usp.br/~marchett/estocastica/MarkKac-Statistical-Independence.pdf">Statistical Independence in Probability, Analysis and Number Theory</a>, Carus Monograph 12, Math. Assoc. Amer., 1959, p. 79.

%F Equals Product_{p prime} 1 + 1/(2 * p * (p-1)).

%F Equals (Pi^2/6) * Product_{p prime} 1 - 1/(2 * p^2) + 1/(2 * p^3).

%e 1.42765653542483988311752393968732790409373362807443...

%t $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{4, -6, 4}, {0, 4, 12}, m]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n/2^n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

%o (PARI) prodeulerrat(1 + 1/(2 * p * (p-1))) \\ _Amiram Eldar_, Mar 17 2021

%Y Cf. A000005, A001221, A034444, A307870.

%K nonn,cons

%O 1,2

%A _Amiram Eldar_, May 02 2019

%E More terms from _Vaclav Kotesovec_, May 29 2020