login
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).
6

%I #39 May 13 2021 02:35:50

%S 1,1,1,1,1,1,1,1,3,1,1,1,5,7,1,1,1,7,13,19,1,1,1,9,19,49,51,1,1,1,11,

%T 25,91,161,141,1,1,1,13,31,145,331,581,393,1,1,1,15,37,211,561,1441,

%U 2045,1107,1,1,1,17,43,289,851,2841,5797,7393,3139,1

%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).

%H Seiichi Manyama, <a href="/A307855/b307855.txt">Antidiagonals n = 0..139, flattened</a>

%H T. D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

%F A(n,k) is the coefficient of x^n in the expansion of (1 + x + k*x^2)^n.

%F A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * binomial(2*j,j).

%F D-finite with recurrence: n * A(n,k) = (2*n-1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 3, 5, 7, 9, 11, 13, ...

%e 1, 7, 13, 19, 25, 31, 37, ...

%e 1, 19, 49, 91, 145, 211, 289, ...

%e 1, 51, 161, 331, 561, 851, 1201, ...

%e 1, 141, 581, 1441, 2841, 4901, 7741, ...

%e 1, 393, 2045, 5797, 12489, 22961, 38053, ...

%t T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 13 2021 *)

%Y Columns k=0..6 give A000012, A002426, A084601, A084603, A084605, A098264, A098265.

%Y Main diagonal gives A187018.

%Y Cf. A110180, A292627, A307847, A307860, A307910.

%K nonn,tabl

%O 0,9

%A _Seiichi Manyama_, May 01 2019