OFFSET
1,3
FORMULA
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{i>=1} Sum_{j>=1} a(i)*a(j)*x^(i*j)).
MATHEMATICA
a[n_] := a[n] = Sum[a[n - k] Sum[a[d] a[k/d], {d, Divisors[k]}], {k, 1, n - 1}]; a[1] = 1; Table[a[n], {n, 1, 26}]
a[n_] := a[n] = SeriesCoefficient[x + Sum[a[k] x^k, {k, 1, n - 1}] Sum[Sum[a[i] a[j] x^(i j), {j, 1, n - 1}], {i, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 26}]
PROG
(PARI) lista(nn) = { my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] = sum(k=1, n-1, va[n-k] * sumdiv(k, d, va[d]*va[k/d]))); va; } \\ Michel Marcus, Apr 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 30 2019
STATUS
approved