Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 29 2019 20:36:14
%S 3,0,3,1,2,0,2,2,5,2,1,2,0,0,0,0,1,2,3,0,1,1
%N Number of palindromic nonagonal numbers with exactly n digits.
%C Number of terms in A082723 with exactly n digits.
%H G. J. Simmons, <a href="/A002778/a002778_2.pdf">Palindromic powers</a>, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95.
%e There are only three 3 digit nonagonal numbers that are palindromic, 111, 474 and 969. Thus, a(3)=3.
%t A082723 = {0, 1, 9, 111, 474, 969, 6666, 18981, 67276, 4411144, 6964696, 15444451, 57966975, 448707844, 460595064, 579696975, 931929139, 994040499, 1227667221, 9698998969, 61556965516, 664248842466, 699030030996, 99451743334715499, 428987160061789824, 950178723327871059, 1757445628265447571, 4404972454542794044, 9433971680861793349, 499583536595635385994, 1637992008558002997361, 19874891310701319847891}; Table[Length[Select[A082723, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 22}]
%Y Cf. A001106, A055560, A082722, A082733, A307801, A307802.
%K nonn,base,more
%O 1,1
%A _Robert Price_, Apr 29 2019