login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of palindromic octagonal numbers of length n whose index is also palindromic.
2

%I #8 Aug 11 2024 14:41:35

%S 3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Number of palindromic octagonal numbers of length n whose index is also palindromic.

%C Is there a nonzero term beyond a(1)?

%H P. De Geest, <a href="https://www.worldofnumbers.com/square.htm">Palindromic Squares</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>

%e There are only three palindromic octagonal numbers of length 1 whose index is also palindromic, 0->0, 1->1, and 2->8. Thus, a(1)=3.

%t A057107 = {0, 1, 8, 8008, 120232021, 124060421, 161656161, 185464581, 544721127445, 616947749616, 3333169613333, 3333802083333, 6506939396056, 12212500521221, 5466543663456645, 3310988011108890133, 520752145595541257025, 336753352502205253357633, 5882480463134313640842885, 102573006711888117600375201, 8025741496504444056941475208, 18651903272292929227230915681, 33582545421505050512454528533};

%t A057106 = {0, 1, 2, 52, 6331, 6431, 7341, 7863, 426115, 453486, 1054067, 1054167, 1472746, 2017631, 42687015, 1050553507, 13175129925, 335038979077, 1400295262095, 5847307263801, 51722791547842, 78849864240621, 105802560494387};

%t Table[Length[Select[A057106[[Table[Select[Range[20], IntegerLength[A057107[[#]]] == n || (n == 1 && A057107[[#]] == 0) &], {n, 20}][[n]]]], PalindromeQ[#] &]], {n, 20}]

%Y Cf. A000567, A057107, A057106, A059870, A307790, A307791.

%K nonn,base,hard,more

%O 1,1

%A _Robert Price_, Apr 29 2019