Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 May 02 2019 06:09:44
%S 2,7,2,3,4,3,5,8,7,7,0,7,5,9,6,7,6,4,7,8,4,0,7,0,6,7,6,9,2,3,9,5,5,5,
%T 7,8,7,4,8,2,2,5,1,0,8,0,6,4,3,9,5,8,7,1,6,4,5,3,8,9,6,2,0,4,1,2,8,3,
%U 7,5,9,7,0,0,5,7,2,9,6,5,1,1,5,0,1,2,9,8,4,6,1,7,7,3,1,3,1,7,3,9,8,0,2,7
%N Decimal expansion of the alternating convergent series S = Sum_{k>=0} (-1)^k*f(k), where f(k) = harmonic(2^k) - k*log(2) - gamma, harmonic(m) is the Sum_{j=1..m} 1/j, and gamma is Euler-Mascheroni constant.
%e 0.272343587707596764784070676923955578748225108064395871645389620412837597...
%p evalf(Sum((-1)^k*(harmonic(2^k) - k*log(2) - gamma), k=0..infinity), 120); # _Vaclav Kotesovec_, Apr 30 2019
%t digits = 104; s = NSum[(-1)^k*(HarmonicNumber[2^k] - k*Log[2] - EulerGamma), {k, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10]; RealDigits[s, 10, digits][[1]] (* _Jean-François Alcover_, Apr 28 2019 *)
%o (PARI) default(realprecision, 120); sumalt(k=0, (-1)^k*(psi(2^k+1) - k*log(2))) \\ _Vaclav Kotesovec_, Apr 30 2019
%Y Cf. A001620 (Euler-Mascheroni), A001008/A002805 (harmonic), A002162 (log(2)), A094640 (alternate Euler's constant), A256921 (a similar constant).
%K cons,nonn
%O 0,1
%A _Luis H. Gallardo_, Apr 20 2019