login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cycles in the n-dipyramidal graph.
0

%I #8 Jan 07 2023 09:28:13

%S 1,6,22,63,151,316,596,1037,1693,2626,3906,5611,7827,10648,14176,

%T 18521,23801,30142,37678,46551,56911,68916,82732,98533,116501,136826,

%U 159706,185347,213963,245776,281016,319921,362737,409718,461126,517231,578311,644652,716548,794301

%N Number of cycles in the n-dipyramidal graph.

%C Extended to a(1)-a(2) using the formula/recurrence.

%C For n > 2, also the number of minimal edge cuts in the n-prism graph. - _Eric W. Weisstein_, Jan 07 2023

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalEdgeCut.html">Minimal Edge Cut</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -5, 1).

%F a(n) = n*(n - 1)*(2*n^2 - 4*n + 15)/6 + 1.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

%F G.f.: x (-1 - x - 2*x^2 - 3*x^3 - x^4)/(-1 + x)^5.

%t LinearRecurrence[{5, -10, 10, -5, 1}, {1, 6, 22, 63, 151}, 20]

%t Table[n (n - 1) (2 n^2 - 4 n + 15)/6 + 1, {n, 20}]

%t CoefficientList[Series[(-1 - x - 2 x^2 - 3 x^3 - x^4)/(-1 + x)^5, {x, 0, 20}], x]

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Apr 19 2019