login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...
6

%I #11 Mar 19 2021 11:52:49

%S 1,1,3,6,17,28,72,122,282,493,1027,1790,3673,6300,12205,21117,39782,

%T 67989,124937,212189,381705,644625,1136315,1905352,3312916,5513005,

%U 9443362,15624026,26445046,43451200,72751824,118792691,196966722,319714816,525316191,847734183,1381904765

%N G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

%C Euler transform of A050369.

%H Vaclav Kotesovec, <a href="/A307604/b307604.txt">Table of n, a(n) for n = 0..5000</a>

%F G.f.: Product_{k>=1} 1/(1 - x^k)^(k*A074206(k)).

%F a(n) ~ (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(50*(2+r))) * exp(12/625 + ((2+r)/(1+r)) * (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(2+r)) * n^((1+r)/(2+r))) / (A^(144/625) * sqrt(2*Pi*(2+r)) * n^(1/2 + 1/(50*(2+r)))), where r = A107311 is the root of the equation zeta(r)=2 and A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Mar 18 2021

%e G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 17*x^4 + 28*x^5 + 72*x^6 + 122*x^7 + 282*x^8 + 493*x^9 + ...

%t terms = 36; A[_] = 1; Do[A[x_] = 1/(1 - x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

%Y Cf. A050369, A074206, A129374, A307605, A307606, A307607.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 18 2019