Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 11 2022 20:22:06
%S 1,1,2,7,28,145,880,6221,50048,452097,4531440,49919461,599595192,
%T 7799387921,109232872424,1638888843541,26226252579296,445889920626817,
%U 8026518496420896,152509898418037765,3050274960962524520,64056803495548131665,1409264093116606297080
%N Expansion of e.g.f. (sec(x) + tan(x))*exp(-x)/(1 - x).
%C Boustrophedon transform of A000166.
%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%t nmax = 22; CoefficientList[Series[(Sec[x] + Tan[x]) Exp[-x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
%t t[n_, 0] := (-1)^n HypergeometricPFQ[{-n, 1}, {}, 1]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 23, 0]
%o (Python)
%o from itertools import accumulate, count, islice
%o def A307594_gen(): # generator of terms
%o blist, a, b = tuple(), 1, -1
%o for n in count(1):
%o yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
%o a, b = a*n+b, -b
%o A307594_list = list(islice(A307594_gen(),30)) # _Chai Wah Wu_, Jun 11 2022
%Y Cf. A000111, A000166, A230960, A307593.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 17 2019