Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 12 2019 08:26:32
%S 125,175,245,250,275,325,343,350,375,385,425,455,475,490,500,525,539,
%T 550,575,595,605,625,637,650,665,686,700,715,725,735,750,770,775,805,
%U 825,833,845,847,850,875,910,925,931,935,950,975,980,1000,1001,1015,1025
%N Heinz numbers of integer partitions with Durfee square of length > 2.
%C First differs from A307386 in having 7^4 = 2401.
%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C The Durfee square of an integer partition is the largest square contained in its Young diagram.
%C The enumeration of these partitions by sum is given by A084835.
%D Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.
%H Gus Wiseman, <a href="/A307515/b307515.txt">Table of n, a(n) for n = 1..22485</a>
%H FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000183">St000183: The side length of the Durfee square of an integer partition</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Durfee_square">Durfee square</a>.
%e The sequence of terms together with their prime indices begins:
%e 125: {3,3,3}
%e 175: {3,3,4}
%e 245: {3,4,4}
%e 250: {1,3,3,3}
%e 275: {3,3,5}
%e 325: {3,3,6}
%e 343: {4,4,4}
%e 350: {1,3,3,4}
%e 375: {2,3,3,3}
%e 385: {3,4,5}
%e 425: {3,3,7}
%e 455: {3,4,6}
%e 475: {3,3,8}
%e 490: {1,3,4,4}
%e 500: {1,1,3,3,3}
%e 525: {2,3,3,4}
%e 539: {4,4,5}
%e 550: {1,3,3,5}
%e 575: {3,3,9}
%e 595: {3,4,7}
%t durf[n_]:=Length[Select[Range[PrimeOmega[n]], Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[#]]>=#&]];
%t Select[Range[100], durf[#]>2&]
%Y Positions of numbers > 2 in A257990.
%Y Cf. A006918, A056239, A084835, A112798, A115994, A117485, A252464, A325163, A325170.
%K nonn
%O 1,1
%A _Gus Wiseman_, Apr 12 2019