OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = 2/(1 - 2*x*A(x) + sqrt(1 - 4*x^2*A(x)^2)).
G.f. A(x) satisfies: A(x) = Sum_{k>=0} binomial(k,floor(k/2))*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x*(1 - 2*x + sqrt(1 - 4*x^2))/2).
a(n) ~ 1/(n^(3/2)*sqrt(Pi*(103/6 + (1/6)*sqrt(36037)*cos((1/3)*(4*Pi + arccos(6832781/(36037*sqrt(36037))))))) * (-7/48 + (1/24)*sqrt(203/2) * cos((1/3)*arccos(-(1849/(203*sqrt(406))))))^n). - Vaclav Kotesovec, Sep 16 2021
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 161*x^5 + 700*x^6 + 3144*x^7 + 14495*x^8 + 68167*x^9 + 325787*x^10 + ...
MATHEMATICA
terms = 26; CoefficientList[1/x InverseSeries[Series[x (1 - 2 x + Sqrt[1 - 4 x^2])/2, {x, 0, terms}], x], x]
terms = 26; A[_] = 0; Do[A[x_] = 1/(1 - x A[x] + ContinuedFractionK[-x^2 A[x]^2, 1, {k, 1, j}]) + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 25; A[_] = 1; Do[A[x_] = 2/(1 - 2 x A[x] + Sqrt[1 - 4 x^2 A[x]^2]) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 26; A[_] = 1; Do[A[x_] = Sum[Binomial[k, Floor[k/2]] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 10 2019
STATUS
approved