login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} mu(k)^2*x^k*A(x)^k/(1 - x^k*A(x)^k)^2, where mu() is the Möbius function (A008683).
1

%I #5 Apr 10 2019 16:50:03

%S 1,1,4,14,59,257,1185,5609,27259,134911,678252,3452924,17767047,

%T 92248717,482710548,2543031236,13477141627,71800541745,384320284096,

%U 2065782153388,11146084675905,60346599617759,327749929622743,1785153353416807,9748766110978057,53367282644562541

%N G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} mu(k)^2*x^k*A(x)^k/(1 - x^k*A(x)^k)^2, where mu() is the Möbius function (A008683).

%F G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} psi(k)*x^k*A(x)^k, where psi() is the Dedekind psi function (A001615).

%F G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} psi(k)*x^k)).

%e G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 59*x^4 + 257*x^5 + 1185*x^6 + 5609*x^7 + 27259*x^8 + 134911*x^9 + 678252*x^10 + ...

%t terms = 26; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[DirichletConvolve[i, MoebiusMu[i]^2, i, k] x^k, {k, 1, terms}]), {x, 0, terms}], x], x]

%t terms = 26; A[_] = 0; Do[A[x_] = 1 + Sum[MoebiusMu[k]^2 x^k A[x]^k/(1 - x^k A[x]^k)^2, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

%t terms = 26; A[_] = 0; Do[A[x_] = 1 + Sum[DirichletConvolve[i, MoebiusMu[i]^2, i, k] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

%Y Cf. A001615, A008683, A292875, A307487.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 10 2019