%I #6 Apr 09 2019 20:45:42
%S 39999899,62999939,82999919,96951989,98487989,99397619,137249999,
%T 137363999,140990999,141374879,149999879,151257989,154788989,
%U 171151889,178873889,181374959,187054979,196689989,197399999,197415389,197474489,199596479,199924919,199972379,212114999,216794399,217024979
%N SanD-122 primes: primes p such that p+d is also prime and sum of digits A007953(p(p+d)) = d, with d = 122.
%C SanD-d primes exist only for d = 14 + 18*k, k = -1/2, 0, 1, 2, 3, ...
%C This is the sequence for k = 6. See cross-references for other k and related sequences, in particular the main entry A307479.
%o (PARI) print_A307477(N,d=122)=forprime(p=2,,isprime(p+d)&&sumdigits(p*(p+d))==d&&!print1(p,",")&&!N--&&break)
%Y Cf. A307471 - A307478 (d = 14+18k, k=0..7), A307479 (any d: main entry), A307480 (smallest prime for given d).
%Y Cf. A000040 (primes), A007953 (sum of digits).
%K nonn,base
%O 1,1
%A _M. F. Hasler_, Apr 09 2019