login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of Catalan words of length n avoiding the pattern 210.
1

%I #4 Apr 09 2019 12:05:09

%S 1,1,2,5,14,41,121,355,1032,2974,8509,24210,68595,193753,546041,

%T 1536358,4317652,12123685,34021810,95431301,267601625,750221859,

%U 2102913404,5893910702,16517729313,46288368894,129710571239,363467837569,1018468044881,2853791650010

%N Number of Catalan words of length n avoiding the pattern 210.

%H J.-L. Baril, S. Kirgizov, V. Vanjovszki, <a href="http://doi.org/10.1016/j.disc.2018.06.001">Descent distribution on Catalan words avoiding a pattern of length at most three</a>, Disc. Math. 341 (2018) 2608-2615, Table 2.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,5,2).

%F a(n) = A215404(n+2) -2*A215404(n+1) - A215404(n) -2^(n-1), n>0.

%F G.f.: (1-5*x+7*x^2-x^3-x^4)/(1-2*x)/(1-4*x+3*x^2+x^3) .

%p (1-5*x+7*x^2-x^3-x^4)/(1-2*x)/(1-4*x+3*x^2+x^3) ;

%p taylor(%,x=0,30) ;

%p gfun[seriestolist](%) ;

%K nonn,easy

%O 0,3

%A _R. J. Mathar_, Apr 09 2019