login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (-1)^(i+j+k+l) * (i+j+k+l)!/(4!*i!*j!*k!).
3

%I #18 May 20 2019 15:24:57

%S 0,1,36,6286,1056496,197741887,38987482590,7992252465604,

%T 1685955453442326,363605412277403725,79808698852014867735,

%U 17769930438868419048744,4003861131932651139989514,911215485942545343663605503,209160405405110598032066208338

%N a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (-1)^(i+j+k+l) * (i+j+k+l)!/(4!*i!*j!*k!).

%F a(n) ~ 2^(8*n + 9/2) / (1875 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Apr 04 2019

%t Table[Sum[Sum[Sum[Sum[(-1)^(i + j + k + l)*(i + j + k + l)!/(4!*i!*j!*k!*l!), {i, 1, n}], {j, 1, n}], {k, 1, n}], {l, 1, n}], {n, 0, 14}] (* _Amiram Eldar_, Apr 03 2019 *)

%o (PARI) {a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, (-1)^(i+j+k+l)*(i+j+k+l)!/(24*i!*j!*k!*l!)))))}

%o (PARI) {a(n) = sum(i=4, 4*n, (-1)^i*i!*polcoef(sum(j=1, n, x^j/j!)^4, i))/24} \\ _Seiichi Manyama_, May 20 2019

%Y Cf. A144662, A307324, A307349, A307350.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Apr 03 2019