login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=1..n} Sum_{j=1..n} (-1)^(i+j) * (i+j)!/(2!*i!*j!).
5

%I #24 Jul 11 2019 11:14:29

%S 0,1,1,5,15,56,203,757,2839,10736,40821,155948,598065,2301118,8878591,

%T 34340085,133100055,516851528,2010358061,7831136920,30546063745,

%U 119291436738,466379022561,1825168170620,7149316835465,28027993191706,109965636641173

%N a(n) = Sum_{i=1..n} Sum_{j=1..n} (-1)^(i+j) * (i+j)!/(2!*i!*j!).

%H Seiichi Manyama, <a href="/A307349/b307349.txt">Table of n, a(n) for n = 0..1665</a>

%F a(n) = (A120305(n) - (-1)^n)/2. - _Vaclav Kotesovec_, Apr 03 2019

%F a(n) ~ 2^(2*n+1) / (9*sqrt(Pi*n)). - _Vaclav Kotesovec_, Apr 03 2019

%F G.f.: (1/sqrt(1-4*z)-1+2*z/(1-z^2))/(2*(2+z)). - _Sergey Perepechko_, Jul 11 2019

%t Table[Sum[Sum[(-1)^(i + j)*(i + j)!/(2*i!*j!), {i, 1, n}], {j, 1, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Apr 03 2019 *)

%o (PARI) {a(n) = sum(i=1, n, sum(j=1, n, (-1)^(i+j)*(i+j)!/(2*i!*j!)))}

%o (PARI) {a(n) = sum(i=2, 2*n, (-1)^i*i!*polcoef(sum(j=1, n, x^j/j!)^2, i))/2} \\ _Seiichi Manyama_, May 20 2019

%Y Cf. A048775, A120305, A307350, A307351.

%K nonn

%O 0,4

%A _Seiichi Manyama_, Apr 03 2019