login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sprague-Grundy values for Maharaja Nim on the counterclockwise square spiral.
7

%I #34 Mar 07 2020 13:52:25

%S 0,1,2,3,4,5,6,7,8,4,6,5,7,9,8,10,1,9,2,10,3,9,11,10,2,0,3,11,10,4,1,

%T 0,6,12,7,5,3,0,8,7,1,4,5,0,2,1,12,13,6,7,1,14,8,12,3,2,9,8,10,3,2,13,

%U 4,6,7,11,13,6,12,15,14,16,8,10,7,14,4,5,3,15

%N Sprague-Grundy values for Maharaja Nim on the counterclockwise square spiral.

%C A Maharaja is a piece which can move both like a queen and a knight.

%C A274641 is the analogous sequence if the piece is a chess queen.

%H Rémy Sigrist, <a href="/A307282/b307282.txt">Table of n, a(n) for n = 0..10200</a> (-50 <= x <= 50 and -50 <= y <= 50)

%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.

%H Urban Larsson and Johan Wastlund, <a href="https://arxiv.org/abs/1207.0765">Maharaja Nim: Wythoff’s Queen meets the Knight</a>, arXiv 1207.0765 [math.CO], 2012.

%H Urban Larsson and Johan Wästlund, <a href="https://www.emis.de/journals/INTEGERS/papers/og5/og5.Abstract.html">Maharaja Nim: Wythoff's Queen meets the Knight</a>, Integers: Electronic Journal of Combinatorial Number Theory 14 (2014), #G05.

%H Rémy Sigrist, <a href="/A307282/a307282_1.png">Colored representation of the spiral for x = -500..500 and y = -500..500</a> (where the hue is function of T(x,y) and black pixels correspond to 0's)

%H Rémy Sigrist, <a href="/A307282/a307282.gp.txt">PARI program for A307282</a>

%H N. J. A. Sloane, <a href="/A307282/a307282.png">Illustration of initial terms.</a>

%e The counterclockwise square spiral begins:

%e .

%e 16--15--14--13--12

%e | |

%e 17 4---3---2 11 .

%e | | | |

%e 18 5 0---1 10 .

%e | | |

%e 19 6---7---8---9 .

%e |

%e 20--21--22--23--24--25

%e .

%o (PARI) See Links section.

%Y For the P-positions see A307283.

%Y Cf. A274641, A308201.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Apr 05 2019

%E More terms from _Rémy Sigrist_, Apr 06 2019