login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).
0

%I #10 Apr 03 2019 03:00:39

%S 1,1,1,2,5,12,27,58,122,257,549,1190,2600,5683,12367,26749,57530,

%T 123202,263115,561131,1196248,2550975,5443115,11620526,24814735,

%U 52979512,113038103,240936717,512916683,1090501249,2315608462,4911611864,10408318627,22040127864

%N Expansion of Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).

%C First differences of the binomial transform of A000700.

%F G.f.: Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)).

%F a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 01 2019

%p a:=series(mul(1/(1+(-x)^k/(1-x)^k),k=1..50),x=0,34): seq(coeff(a,x,n),n=0..33); # _Paolo P. Lava_, Apr 02 2019

%t nmax = 33; CoefficientList[Series[Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A000700, A129519, A218482, A307264.

%K nonn

%O 0,4

%A _Ilya Gutkovskiy_, Apr 01 2019