OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
a(n) = floor(n*(14*n^2+9*n+2)/4)-6*n^2.
G.f.: 2*x^2*(4*x^2+10*x+7)/((x+1)*(x-1)^4).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4. - Colin Barker, Apr 02 2019
MATHEMATICA
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 14, 62, 166}, 166] (* Metin Sariyar, Oct 27 2019 *)
PROG
(PARI) concat([0, 0], Vec(2*x^2*(7 + 10*x + 4*x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Apr 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John King, Mar 31 2019
STATUS
approved