login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular table T(n, k) read by rows: n-th row gives number of subsets of the divisors of n which sum to k for 1 <= k <= sigma(n).
2

%I #7 Apr 02 2019 14:38:02

%S 1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,

%T 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,1,1,0,1,

%U 1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1

%N Irregular table T(n, k) read by rows: n-th row gives number of subsets of the divisors of n which sum to k for 1 <= k <= sigma(n).

%C T(n, k) > 0 for all values of k iff n is practical (A005153).

%F T(n, n) = A033630(n).

%F T(n, A030057(n)) = 0 if there is a 0 in the n-th row, i.e. A030057(n) <= sigma(n) or n is not practical.

%e Table begins as:

%e 1

%e 1,1,1

%e 1,0,1,1

%e 1,1,1,1,1,1,1

%e 1,0,0,0,1,1

%e 1,1,2,1,1,2,1,1,2,1,1,1

%e 1,0,0,0,0,0,1,1

%e 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%e 1,0,1,1,0,0,0,0,1,1,0,1,1

%e 1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1

%t T[n_,k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; Table[T[n, k], {n,1,10}, {k, 1, DivisorSigma[1,n]}] // Flatten

%Y Cf. A005153, A027750, A030057, A033630, A119348, A225561, A237287, A322860.

%K nonn,tabf

%O 1,24

%A _Amiram Eldar_, Mar 29 2019