login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{k>=1} (1 + 1/k^5).
2

%I #16 Jan 25 2024 14:31:17

%S 2,0,7,4,2,2,5,0,4,4,7,9,6,3,7,8,9,1,3,9,0,7,0,8,9,6,8,5,9,4,3,8,4,0,

%T 5,6,9,7,7,1,2,5,3,3,7,9,6,2,2,2,7,2,8,8,3,3,4,7,3,4,0,3,6,9,8,8,3,6,

%U 1,9,6,0,5,9,6,2,5,9,0,1,5,9,1,8,6,4,7,2,4,8,5,8,4,4,4,2,9,2,3,6,6,3,2,5,6

%N Decimal expansion of Product_{k>=1} (1 + 1/k^5).

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>.

%F Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(5*j)/j)).

%F Equals 1/(Gamma(1/(2*phi^2) - i*(5^(1/4)/(2*sqrt(phi)))) * Gamma(phi^2/2 + i*5^(1/4)*(sqrt(phi)/2)) * Gamma(phi^2/2 - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(1/(2*phi^2) + i*(5^(1/4)/(2*sqrt(phi))))), where i is the imaginary unit and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

%e 2.07422504479637891390708968594384056977125337962227288334734036988361960596259...

%p evalf(Product(1 + 1/j^5, j = 1..infinity), 120);

%t RealDigits[Chop[N[Product[(1 + 1/n^5), {n, 1, Infinity}], 120]]][[1]]

%t With[{g = GoldenRatio}, Chop[N[1/(Gamma[1/(2*g^2) - I*5^(1/4)/(2*Sqrt[g])] * Gamma[g^2/2 + I*5^(1/4) * Sqrt[g]/2] * Gamma[g^2/2 - I*5^(1/4) * Sqrt[g]/2] * Gamma[1/(2*g^2) + I*5^(1/4)/(2*Sqrt[g])]), 120]]]

%t N[1/Abs[Gamma[Exp[2*Pi*I/5]]*Gamma[Exp[6*Pi*I/5]]]^2, 120] (* _Vaclav Kotesovec_, Apr 27 2020 *)

%o (PARI) default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(5*j)/j))

%Y Cf. A156648, A073017, A258870, A258871.

%K nonn,cons

%O 1,1

%A _Vaclav Kotesovec_, Mar 29 2019