%I #6 Mar 26 2019 21:07:23
%S 1,1,4,14,48,161,535,1759,5742,18619,60030,192526,614537,1953064,
%T 6182342,19497895,61282168,191995744,599721399,1868049926,5803381167,
%U 17984273654,55601057973,171516227866,527968915206,1621949729945,4973174537640,15220730405484,46502692854974
%N Expansion of Product_{j>=1} 1/(1 - (-1 + Product_{k>=1} 1/(1 - x^k))^j).
%F G.f.: p(p(x) - 1), where p(x) = g.f. of A000041 (partitions numbers).
%t nmax = 28; CoefficientList[Series[Product[1/(1 - (-1 + Product[1/(1 - x^k), {k, 1, nmax}])^j), {j, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A000041, A307128.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Mar 26 2019