login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,2*j) * binomial(n-k,2*j).
3

%I #20 May 20 2021 04:44:44

%S 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,-2,-2,1,1,1,1,-5,-8,-5,1,1,1,1,-9,

%T -17,-17,-9,1,1,1,1,-14,-29,-34,-29,-14,1,1,1,1,-20,-44,-54,-54,-44,

%U -20,1,1,1,1,-27,-62,-74,-74,-74,-62,-27,1,1,1,1,-35,-83,-90,-74,-74,-90,-83,-35,1,1

%N Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,2*j) * binomial(n-k,2*j).

%H Seiichi Manyama, <a href="/A307090/b307090.txt">Rows n = 0..139, flattened</a>

%e Triangle begins:

%e n\k | 0 1 2 3 4 5 6 7 8

%e ----+-------------------------------------

%e 0 | 1;

%e 1 | 1, 1;

%e 2 | 1, 1, 1;

%e 3 | 1, 1, 1, 1;

%e 4 | 1, 1, 0, 1, 1;

%e 5 | 1, 1, -2, -2, 1, 1;

%e 6 | 1, 1, -5, -8, -5, 1, 1;

%e 7 | 1, 1, -9, -17, -17, -9, 1, 1;

%e 8 | 1, 1, -14, -29, -34, -29, -14, 1, 1;

%t T[n_, k_] := Sum[(-1)^j * Binomial[k, 2*j] * Binomial[n - k, 2*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 20 2021 *)

%Y Row sums give A099587(n+1).

%Y T(2*n,n) gives A307091.

%Y Cf. A007318, A098593, A119326, A119335.

%K sign,tabl,look

%O 0,18

%A _Seiichi Manyama_, Mar 24 2019