login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers prime to 7 that are not represented by x^2+y^2+7*z^2.
0

%I #17 Aug 27 2019 04:22:33

%S 3,6,19,22,31,51,55,66,94,139,142,159,166,214,235,283,439,534,559,670,

%T 874,946,1726,2131,2419,3559,4759

%N Numbers prime to 7 that are not represented by x^2+y^2+7*z^2.

%C If it exists, a(28) > 10^7. - _Andrew Howroyd_, Aug 17 2019

%H Irving Kaplansky, <a href="https://doi.org/10.1090/S0025-5718-1995-1265017-2">The first nontrivial genus of positive definite ternary forms</a>, Mathematics of Computation, Vol. 64 (1995): 341-345.

%t max = 10000;

%t Table[Table[Table[x^2 + y^2 + 7 z^2, {z, 0, Sqrt[max - x^2 - y^2]/Sqrt[7] // Ceiling}], {y, 0, Sqrt[max - x^2] // Ceiling}], {x, 0, Sqrt[max] // Ceiling}] // Flatten // Union // Select[#, # <= max&]& // Complement[ Select[ Range[max], CoprimeQ[#, 7]&], #]& // Quiet (* _Jean-François Alcover_, Aug 27 2019 *)

%o (PARI)

%o issumsquare(n)={my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1}

%o ok(m)={if(m%7, for(i=0, sqrtint(m\7), if(issumsquare(m-7*i^2), return(0))); 1, 0)}

%o select(ok, [1..10000]) \\ _Andrew Howroyd_, Aug 17 2019

%Y Cf. A097633.

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_, Mar 26 2019